J. Matthew Griffis
TD Seminar: Game Studies
11/30/13

Platform Studies: GameSalad

Preface
A Technical Note
1. Historical Introduction--Rise of the Middlemen
11. The Goal of this Paper
II1. Getting Started with GameSalad
1V. The UlI, Part One: Platforms and the Arcade
V. The UI, Part Two: The Scene View
V1. The UI, Part Three: Hello World
VII. The Games We Make
VIII. Dubious Design Decisions
Vllila. Physics
VIiIb. No Snap-to-Grid
IX. Conclusion

Preface

This paper is in the spirit of the Platform Studies book series!, though it is not an
official member. (Should The MIT Press issue a cease-and-desist letter, [will change the title; in
the meantime, I carry on.) Specifically this essay is inspired by Montfort and Bogost’s Racing
the Beam, an examination of the relationship between the technical nature of the Atari 2600
game console and the games produced for it. This look at how the functionality of a platform
influences the design of software is core to the nascent discipline of platform studies. In this
paper I apply the methodology to GameSalad®, a piece of software designed to help
non-programmers create digital games (video games).

A note to the reader: I write about how the design of GameSalad itself affects the
process of designing with it, and what agenda it may advance. In the interest of full disclosure I

must admit that I first approached GameSalad with an agenda of my own (though it had nothing

' http://platformstudies.com/
2 http://gamesalad.com/

Griffis--Platform Studies: GameSalad--1

http://www.google.com/url?q=http%3A%2F%2Fplatformstudies.com%2F&sa=D&sntz=1&usg=AFQjCNFyK-9m3oIsS8M8gp_JyS30q_YV7A
http://www.google.com/url?q=http%3A%2F%2Fgamesalad.com%2F&sa=D&sntz=1&usg=AFQjCNGM0PyNnBZeGWw8kiiDciM0Dqp6YA

to do with this paper). Last summer I was asked to work on PETLab’s “Activate!” project.’
Activate! is a curriculum to teach children how to create video games,* and at the time consisted
of two parts: a) a series of games of escalating complexity and b) tutorials for how to create
them. The games and tutorials were created using another piece of software called

GameMaker; my task was to recreate the games and tutorials in GameSalad. 1 had used
GameMaker before, but never GameSalad, so the re-creation of the Activate! games became

a way to learn how to use GameSalad.

Anyone who has ever attempted to port software from its original platform to another
knows the challenge and frustration inherent in the enterprise. It’s the same as translating
between spoken languages--things don’t match up exactly, and making it work requires a lot of
rejiggering’. I didn’t approach GameSalad with the mentality of “Let’s see what this software
can do!” but rather “Let’s see how easily this software can do what GameMaker does!”
Furthermore, I had just spent a year learning how to program, which is the kind of knowledge
GameSalad exists to circumvent. I was no longer the person for whom GameSalad was
intended.

Given these factors, could I help but be preemptively biased against GameSalad, keen
to identify its weaknesses? Perhaps not. However I also think those factors were a perfect
primer for writing this paper, because they got me thinking very analytically and critically about
how I perceive GameSalad to work and how that influences game development using the
software.

I don’t claim to have mastered GameSalad by any stretch of the imagination. There are
some features I have ignored, for reasons I will discuss later, and it’s possible that their use
could address some of my points. I’ve used the software for about half a year, and am still

learning its capabilities.

3 “PETLab” is The Prototyping, Education and Technology Lab (http://petlab.parsons.edu/).
4 http://petlab.parsons.edu/project/activate/
5 A technical term.

Griffis--Platform Studies: GameSalad--2

http://www.google.com/url?q=http%3A%2F%2Fpetlab.parsons.edu%2F&sa=D&sntz=1&usg=AFQjCNGjwHzUO7mLPo-cMU67ny2TM2F6GA
http://www.google.com/url?q=http%3A%2F%2Fpetlab.parsons.edu%2Fproject%2Factivate%2F&sa=D&sntz=1&usg=AFQjCNFj-yQc_4jPovGnzzgskvrI7zhO3Q

Furthermore, I don’t mean to imply with this wind-up that GameSalad does not have
much good to offer. GameSalad has many strengths, and I intend to discuss those. GameSalad
markets itself as a professional tool and charges a premium to use it as such. Consequently I
evaluate it both as a learning tool for something like Activate! and as the serious development

tool it claims to be. What humble insights I have, I offer here.

A Technical Note

I worked with the Mac version of GameSalad® (version 0.10.4.1 Beta), except for a
brief dalliance with the PC version’ (also version 0.10.4.1 Beta). As just indicated, GameSalad
is still in beta. It may change substantially before formal release. Unless otherwise noted, all

images are from the Mac version described here.

I. Historical Introduction--Rise of the Middlemen

It is not easy to create games, and it is even more difficult to create video games,
requiring as they do a high degree of computer know-how. One must be able not only to
imagine and plan out the contents of the game, but actually to program it, and to fix it when it
inevitably breaks. For this reason video game development has long been the realm of only
those individuals with the necessary computer science background. The average Joe or Jill with
an idea for a game simply didn’t have access.

That changed with the advent of middleman software. These tools (which are not
restricted to the realm of video games) hid the overwhelming arcana of pure code inside a
friendly and approachable graphical user interface (GUI) with drag-and-drop functionality,
similar to the kind people used every day on their personal computers. Suddenly it was no
longer necessary to know how to program well, if at all! Instead, users could simply drag and
drop visual representations of objects and logical relationships into place, and the software

would invisibly convert that into the actual code.

6 http://gamesalad.com/download
7 http://gamesalad.com/download?platform=windows

Griffis--Platform Studies: GameSalad--3

http://www.google.com/url?q=http%3A%2F%2Fgamesalad.com%2Fdownload&sa=D&sntz=1&usg=AFQjCNG9SaJ4BdUxF-MaUT85LhePYhmtTg
http://www.google.com/url?q=http%3A%2F%2Fgamesalad.com%2Fdownload%3Fplatform%3Dwindows&sa=D&sntz=1&usg=AFQjCNEWp_3BC7zTuLnljzDU9PBGhQ_WXQ

In 2000, a version of the RPG Maker series® came out for the PlayStation. The
software was like a fully-stocked kitchen, including all the ingredients and recipes to make a 2D
role-playing game (RPG). Aspiring designers could assemble their own maps (i.e.
levels/environments) from the included tiles, set parameters for how the combat system would
work, and use a simplified scripting language to define behaviors and create quests for the

player, then save the finished product to a memory card and give it to others to play.

Waorld
MEM

Name
BGM

Tile
Town
Path

Fig. 1: Assembling a map in the PlayStation version of RPG Maker.’
RPG Maker turned consumers into creators. When it appeared on PlayStation the
entire user base was likely to be interested in this conversion, since they were all gamers and it’s

a rare gamer who doesn’t dream of creating her own game. The familiar interface of the game

8 http://www.rpgmakerweb.com/
9

http://www.mobygames.com/images/shots/I/177222-rpg-maker-playstation-screenshot-overworld-edi
tors.png

Griffis--Platform Studies: GameSalad--4

http://www.google.com/url?q=http%3A%2F%2Fwww.rpgmakerweb.com%2F&sa=D&sntz=1&usg=AFQjCNF6GMrkZGW8oDy1sfNszLhmCOcNKQ
http://www.google.com/url?q=http%3A%2F%2Fwww.mobygames.com%2Fimages%2Fshots%2Fl%2F177222-rpg-maker-playstation-screenshot-overworld-editors.png&sa=D&sntz=1&usg=AFQjCNEkeuQfqFXtpCJWNq5rEdU5eX0A0A
http://www.google.com/url?q=http%3A%2F%2Fwww.mobygames.com%2Fimages%2Fshots%2Fl%2F177222-rpg-maker-playstation-screenshot-overworld-editors.png&sa=D&sntz=1&usg=AFQjCNEkeuQfqFXtpCJWNq5rEdU5eX0A0A

controller may also have contributed to accessibility. On the other hand, not all gamers like
RPGs, and the software was “RPG” Maker, not “Game” Maker.

One year earlier, in 1999, GameMaker'’ came out for the PC. Since then it’s received
many updates and a huge increase in popularity. Like RPG Maker, GameMaker allows one to

create games using a drag-and-drop GUI--no programming required.

(X]

B Object Properties

= = il = - 3

Mame: | obi_character _Evertsr. _Achuns: = - %
Spite o Ok witerintiosr | (B °
3 — . 3
"3]“’WJJ"I = ; .Lfol:q_block If & position is collision free @ 2
= <Lefts =

New Edit & ; —

| Il J S0 <Up> Set the gravity |§| @ ‘El :
visble [Soid & <Right (9 i Jump |
1 : o

Depth: 0 | Set the gravity @ @ %
[Persistent A\ Lini the ventis! sead =

(2]

Parent; I(m parent> &l @ If vspeed is larger than 12 E %
Mask: [<same as spite> = Set the vertical speed ot =
= 5

o
[@) Show Information l I
Bw [

&8 -4

| AddEvent |

[Deleta J [Ehange}

p

i

Fig. 2: Setting an object’s behavior in GameMaker by drag-and-dropping action icons."!
Unlike RPG Maker, GameMaker doesn’t limit the input and output to the tropes of
one genre. Furthermore, anyone can download and use a version of the software for free,
though it is necessary to buy various licenses to get access to advanced features and publish
games for profit. GameMaker is robust and has become a respected tool for creating games,
even at the professional level. For example, the wildly successful independent release Hotline

Miami' was created using the software.'®

19 https://www.yoyogames.com/studio

" http://img.photobucket.com/albums/v369/David_Manning/Operation_Block/GameMaker_DD.jpg
12 http://hotlinemiami.com/

'3 http://www.yoyogames.com/news/131

Griffis--Platform Studies: GameSalad--5

https://www.google.com/url?q=https%3A%2F%2Fwww.yoyogames.com%2Fstudio&sa=D&sntz=1&usg=AFQjCNEMsZ8wdtki8bxibBnyVoAhkrGPkQ
http://www.google.com/url?q=http%3A%2F%2Fimg.photobucket.com%2Falbums%2Fv369%2FDavid_Manning%2FOperation_Block%2FGameMaker_DD.jpg&sa=D&sntz=1&usg=AFQjCNFIowH9Lyu9Ht9_ypPqQGjqVLdBWA
http://www.google.com/url?q=http%3A%2F%2Fhotlinemiami.com%2F&sa=D&sntz=1&usg=AFQjCNEyTFCegS_Rt7eitFK9XJcK_aU4_A
http://www.google.com/url?q=http%3A%2F%2Fwww.yoyogames.com%2Fnews%2F131&sa=D&sntz=1&usg=AFQjCNGJgyM8LCNK00GWtCt75PCK6GRIPg

II. The Goal of this Paper

In recent years there has been an explosion of middleman software for game
development, targeting all sorts of different ends, from high-end 3D environments via Unity3D'4;
to sophisticated 2D games via GameMaker; to interactive narrative via Twine'’; to a focus on
accessibility for children via Scratch'®. GameSalad is another such tool, which offers
functionality similar to GameMaker but with a greater focus on accessibility and an aggressive
push toward ease of distribution across all platforms, including online via HTMLS5.

Generally speaking, tools like these are available to everyone with a computer and an
Internet connection, cost little or nothing (at least initially), and require relatively little education
to start using. They democratize game development. For the first time, it is possible for virtually
anyone with an idea for a video game to actually create it. We live in exciting times for the video
game form.

However, these software are not without flaws. There is a tension between accessibility
and control, and ease of use requires compromise. RPG Maker only comes with so many
graphical assets, behaviors and parameters. It is not possible to create any RPG one can dream
up because there are limitations on what the software allows. GameMaker offers its own
programming language--"GameMaker Language” (GML)--for advanced users who want to go
beyond the limits of the GUI, but it too has limitations. So does every other such tool, including
GameSalad.

Note that this is inevitable. I am not stating it as grounds for condemnation. If [write a
library of complex code so that someone else can run it using simple code, he or she is stuck
with whatever methodology I chose. This is not different than if I paid someone to mow my
lawn and didn’t like the lawnmower handling--if I wanted it done “just right,” I’d have to mow

my own lawn. The only way to assert complete control over every aspect of game development

14 http://unity3d.com/
'S hitp://twinery.org/
16 http://scratch.mit.edu/

Griffis--Platform Studies: GameSalad--6

http://www.google.com/url?q=http%3A%2F%2Funity3d.com%2F&sa=D&sntz=1&usg=AFQjCNGHcWCv09BXgd0wYehfL8GsIqGXJg
http://www.google.com/url?q=http%3A%2F%2Ftwinery.org%2F&sa=D&sntz=1&usg=AFQjCNFghGsxqdkEBODQW5ELX4cOwcbQTA
http://www.google.com/url?q=http%3A%2F%2Fscratch.mit.edu%2F&sa=D&sntz=1&usg=AFQjCNEKew2GgtC89R9o97fyIXRE7gmuhw

is to learn to program and write the game from scratch. Otherwise, one takes advantage of
other people’s tools and accepts the loss of some control.

But! It is important to be aware. The technical limitations quickly become apparent
when one tries to accomplish a certain thing and discovers the system doesn’t support it. This is
frustrating, though (again) inevitable. However, any piece of middleman software also has an
agenda, conscious or not, meaning that its creator had ideas about how things should be done,
and developed the tool to reflect those ideas. Using a tool like Unity or Scratch or
GameMaker means operating within a theory about what a game is and how it works, and it is
not always easy or even possible to step outside that theory.

The goal of this paper is to look hard at one specific piece of software, GameSalad,
and try to figure out its technical limitations and its implicit agenda, and how these affect the

games produced using it.

1. Getting Started with GameSalad
Let’s begin at the beginning. We’ve downloaded GameSalad. Let’s open it!

800 GameSalad
a¥ ®
o udMeondld
v beta
Create a New Project Open Recent Projects Learn
__| Blank Project | Lights Off copy 7) Getting Started
EI Alien Conguerors | Lights Off 7! Making It Better
& platformer Template ' Solarball_tutorial 71108 Publishing
EI Basic Shoot Em Up | Solarball 7! Android Publishing
|2 Ccannon Physics | Dropcycle 7 Monetization
|21 Game Center Leaderbo... 7 View All Tutorials
|E1 Official Cross-Platform... 7! Using Pro Features
@View More Open ... CameSalad On YouTube ...
Upgrade to Pro
Upgrade to Pro for exclusive benefits like i0S In-App Purchase and more!
& matticgreek | Logout |
L -

Griffis--Platform Studies: GameSalad--7

Fig. 3: Upon opening GameSalad.

Well, this seems quite friendly! On the left we can create a new project, from scratch or
from a series of included templates that sound like they demonstrate familiar genres and specific
functionality. In the middle we can open existing projects,'” and on the right we can learn how to
use the software. There’s also a “Login” button (or in this case, “Logout” since I’m already
logged in)--GameSalad has a strong focus on community, and people are encouraged to create
an account, not only to publish games on the GameSalad Arcade but also to participate on the
forums. I’m also encouraged to upgrade to the Pro version of the software, which (surprise!) is
not free.'®

Regarding the Learn section, it’s telling that after two entries, “Getting Started” and
“Making It Better,” the suggestions jump immediately to publishing for mobile and monetization.
The monetization is via “In-App Purchase” (IAP), which requires i0S...and a paid Pro account.
There are actually quite a lot of tutorials covering much useful information. One can see them all
by clicking “View All Tutorials” near the bottom, and discover that “Getting Started” and
“Making It Better” are really categories that include all the tutorials related to the game
development itself (pre-distribution and monetization). But it is clear from the get-go that this is a
tool for making money from the lucrative mobile games market. Fair enough, GameSalad; at
least you’re honest about your commercial agenda.

“But, I just want to make games, and teach children how to make games, and publish
games for free, maybe even on the Internet! Can I do that?”” Why yes, yes you can! (Though
that seems to be deemphasized in the tutorial listings.) I give GameSalad a hard time, but the
mobile market is hot right now, and one can’t begrudge a desire to get in on that and help
others to get in on that. The question is whether this push toward a specific goal prevents one
from pursuing other goals, and the answer is that it does not.

However, the focus on in-app purchases bothers me. That is an ideological agenda. It

promotes the “free-to-play” model currently in vogue, in which games are free to download and

7 Pictured: some Activate! games (or at least the names).
18 At the time of this writing, the Pro version of GameSalad costs $299 per year. It is a service.

Griffis--Platform Studies: GameSalad--8

play, but certain content inside the game is locked behind a paywall. It might be a new mission
that the player buys once and then can play as often as desired, or it might be a consumable
item which, when used during play, disappears and must be purchased again. Arguing the merits
and ethics of this approach is a whole other paper, and indeed many people have written about
the topic, but suffice to say that it is only one model of monetization. Yet it appears to be the
only one supported (or at least promoted) by GameSalad.

I suppose there’s nothing stopping one from creating a game with zero IAP and then
selling it on the app store for moneys; this is the “Ye Olde Schoole” of monetization, back before

there was a word for that."”

Given market trends, it may be foolhardy to pursue this strategy,
but it is a strategy. However, the aggressive promotion of IAP in GameSalad as the
monetization strategy, even from the opening screen (we haven’t even made it to the actual Ul
yet), is a bludgeon of sorts, suggesting that this is the way things are done.

This is not just a question of commerce. It has a great impact on design. In-app
purchases are not something to season the game with after it’s done cooking, at least not if one
wants people to buy them.?® Rather, IAP must be planned from the beginning and deeply
integrated into the game design, especially in the case of consumable items. If they are not
required to complete the game, they must convey some desirable benefit, but not one that would
unbalance the game in favor of people who paid up, especially in a competitive context
(otherwise the game becomes “pay-to-win”). If the purchases are required to complete the
game, they must be made available through means other than payment of real money--even if
those means are exceedingly tedious, such as an in-game currency that the player accrues
through play--or it must be clear from the beginning that payment is required to see the game
through.

Earlier this year, the website Kotaku?®! ran an article speculating what classic game

Super Mario Bros. 3 would be like if it were designed in today’s world of free-to-play and

'® The observant reader will probably guess where | come down on this contentious issue.
2 Or is Valve. See: Team Fortress 2 hats (http://wiki.teamfortress.com/wiki/Hats).
2 hitp://kotaku.com/

Griffis--Platform Studies: GameSalad--9

http://www.google.com/url?q=http%3A%2F%2Fwiki.teamfortress.com%2Fwiki%2FHats&sa=D&sntz=1&usg=AFQjCNHtLCtGKIasmmcT_Y3NBu5YQEwSNw
http://www.google.com/url?q=http%3A%2F%2Fkotaku.com%2F&sa=D&sntz=1&usg=AFQjCNGHgHWgy6LcNPcBrKvGVFX4bnER5g

microtransactions. The result is a very different game.?* In-app purchases are a legitimate
monetization approach, but to pretend that they don’t influence the design of a game is
ridiculous. Anyone interested in releasing games with a different economic model using

GameSalad has to ignore or actively buck the constant signalling the software sends.

IV. The U, Part One: Platforms and the Arcade

It’s clear the opening screen of GameSalad is extremely approachable but has an
angle. That being established, let’s take a look at the user interface (UI) by opening a blank

project.

Fig. 4: A blank project.
One thing that GameSalad does very well is to be nonthreatening. This Ul is very

simple aesthetically, with a minimum of buttons on-screen simultaneously and a high degree of

22 http://kotaku.com/the-horror-if-super-mario-bros-3-was-made-in-2013-for-1168392829
Griffis--Platform Studies: GameSalad--10

http://www.google.com/url?q=http%3A%2F%2Fkotaku.com%2Fthe-horror-if-super-mario-bros-3-was-made-in-2013-for-1168392829&sa=D&sntz=1&usg=AFQjCNHZtjWg2Bkx1by8NTP3Ud5B4xrbIQ

intuitiveness. We may not know exactly what every button does right off the bat, but we can

take a guess, and things like “Web Preview” and “Publish” are self-explanatory. We are

ignorant, yes, but not overwhelmed. GameSalad clearly wants to avoid intimidation, and it

cleverly segregates functionality to provide the minimum necessary at any given time. Everything

is so big, friendly and clearly labeled that whatever confusion remains feels more like curiosity.
Looking over the contents of the “Project Info” tab, “Title,” “Description” and

“Instructions” are clear enough--and “Tags” we feel confident ignoring--but what about

“Platform”? Clicking on the drop-down reveals this:

Fig. 5: The “Platform” menu.
“Platform” then must refer to the device on which we intend people to play our game. What are

the practical consequences of choosing one? Let’s pick something different:

Fig. 6: A warning about changing platforms.
Ah, it seems that choosing the Platform affects the size of the game screen. It makes sense that

this choice comes first; we wouldn’t want to design for the wrong screen size.

Griffis--Platform Studies: GameSalad--11

Like the highlighted tutorials on the first screen, the Platform menu seems innocent
enough but nevertheless takes a certain philosophical stance. On the one hand, it does
something genuinely helpful, which is to handle the rote dimensional numbers for us. Can’t
remember the size of an iPad screen? Don’t bother going to Google, GameSalad has your
back. And it is very important to consider the target platform in game development and crucial
to do so early.

On the other hand, look again at that list. Six devices in various orientations (newer
iPhone, older iPhone, iPad, Nook Color, Kindle Fire, Macbook?), two options pertaining to
web publishing (“GameSalad Arcade” and “Legacy Web Game”) and one regular-old
resolution (“720p HD”). That is an awfully limited list, focused primarily on Apple products and
mobile devices. It seems very much in keeping with the previous emphasis on mobile.

One can check “Resolution Independence” and edit settings manually to craft a game at
a different size than any of the prepackaged options. But this is extra work. The default setting
for Platform is “iPhone Landscape,” not “--Select a Platform--", as though to help us skip the
tedious business of deciding; there is already an implicit statement about the standard mode of
operation. Doing things differently means fighting a system that says “these are the platforms for
which you should be making games.”

A list like that can easily be updated, of course.** The options are just shortcuts for
specific settings. But the lack of a “Custom” option is a problematic omission. Why is the only
shortcut not tied to a platform 720p? Why not make it easy to create a game with a unique
resolution? A game like Jason Rohrer’s Passage”--which runs at an extremely unorthodox
resolution of 600x96 pixels--demonstrates that there is a lot of possibility in experimenting with
aspect ratio. But GameSalad doesn’t do much to promote that kind of experimentation. If
anything, it makes it more difficult.

Some restrictions are especially chafing--for instance, the set aspect ratio of GameSalad

2 Whatever that means. “Macbook” is a broad term.
2 And will need to be, because its relevance depends on what'’s hot in the device world.
25 hitp://hcsoftware.sourceforge.net/passage/

Griffis--Platform Studies: GameSalad--12

http://www.google.com/url?q=http%3A%2F%2Fhcsoftware.sourceforge.net%2Fpassage%2F&sa=D&sntz=1&usg=AFQjCNG5t9b3Djv_TvfHGjr6TlUpcJYJ0A

Arcade. One of GameSalad’s biggest points in its favor is the ease of publishing to the web
using HTMLS5, courtesy of the “GameSalad Arcade” website.?® Previously getting a game
playable in a web browser required some kind of software installation like Flash, or a “web
player” that took time to download and might not be compatible with a specific browser, or
some other stumbling block. Publishing a game using HTMLS5 removes all of those concerns, for
the fastest, most seamless, universally compatible experience. Huzzah!

GameSalad makes it extremely easy to do this, but one must choose “GameSalad
Arcade” as the game’s platform. GameSalad Arcade has a resolution of 480x320 pixels. That is

the same size as this image:

Fig. 7: It’s so beautiful! If only it were bigger than a GameSalad Arcade screen!”’
If we set our platform to GameSalad Arcade, we can publish our game for free to the
GameSalad Arcade website (yes!) and easily get the HTML code to embed our game in any
other webpage (double yes!). If we make our game at any resolution other than 480x320, we

don’t get to do these things.

2% hitp://arcade.gamesalad.com/
27 hitp://www.blackberrygood.com/uploads/allimg/111103/2-1111031203110-L.jpg

Griffis--Platform Studies: GameSalad--13

http://www.google.com/url?q=http%3A%2F%2Farcade.gamesalad.com%2F&sa=D&sntz=1&usg=AFQjCNERbuoDi9z5m8n-THBryUB-aX-6sQ
http://www.google.com/url?q=http%3A%2F%2Fwww.blackberrygood.com%2Fuploads%2Fallimg%2F111103%2F2-1111031203110-L.jpg&sa=D&sntz=1&usg=AFQjCNGjS04Eke_wyossdFFNdzR6MSzugA

Consider that a small sprite*® might be 32x32, meaning we could fit 10 of them stacked
vertically in a GameSalad Arcade project. 10 is not many. And if we wanted to use bigger
graphics, like the kind commonly found in a computer game, they would take up most of the
screen by themselves. 480 x 320 is tiny, but that’s the only way currently to take advantage of
GameSalad’s HTMLS publishing power.

As one might imagine, this has serious design consequences. It is not possible to switch
the orientation to make an Arcade game taller than it is wide, which makes vertically-oriented
games almost impossible to do, unless one uses a scrolling camera. If one does use a scrolling
camera, the play experience becomes very different than if the player could see the entire field
simultaneously. With the use of a scrolling camera, one can make the game field as large and
sprawling as desired, but still has to use tiny sprites, or else design for a very, very limited range
of vision around the "giant,” screen-hogging graphics. Speaking from personal experience, in
order to port several of the Activate! games I had to completely redesign the levels in order to
make them work on the GameSalad Arcade platform. The result is a similar game but not the
same game.

GameSalad Arcade is great, but it is extremely restrictive. This is a shame because the
ease of web distribution means the greatest opportunity to share work, yet the work is severely
limited by the platform. There is no need for this, at least outside of GameSalad Arcade’s own
website, and a greater flexibility for web publishing might be GameSalad’s most-needed

feature.

V. The Ul, Part Two: The Scene View

Diving back into the UI, we finally click on the next tab over from “Project Info,” which

1s “Scenes.”

28 “Sprite” in this context refers to a 2D graphic, such as a tree or a person.
Griffis--Platform Studies: GameSalad--14

Fig. 8: Clicked the “Scenes” tab.
We’re still not totally sure what a “scene” is, but apparently there’s an Initial one, so we

double-click on it and see the following:

Fig. 9: The “Scene” view.
This has more information than the previous screens, but it’s still not overwhelming.
So far I’ve been writing this description as though I were new to the software and

attempting to evaluate how easy it is to intuit, but it’s hard to predict how an actual new user

Griffis--Platform Studies: GameSalad--15

would approach learning GameSalad--whether she would avail herself of the helpful tutorials,
for example--so for the sake of time I will admit that I have knowledge. The image above is of
the “Scene” view. The black box on the right is the game screen itself, sized according to the
platform selected previously. In the upper-left is the “Inspector,” for creating and manipulating
the components of the game, while in the lower-left is the “Library,” for storing the logical,
graphical, and audio assets.

Once again, this is all very well organized and easy to understand. Clicking on the
“Images” or “Sounds” tab in the Library reveals a blank white box, into which one can drag and
drop image or sound files for GameSalad to import and make available for use, which it does
seamlessly. Each tab also has a link to purchase pre-made content from an online marketplace,
content which may have been created by other GameSalad users; this is the first glimpse of the
other side of monetizing GameSalad (and general artistic) expertise, which is making content
for other users to purchase for use in their own games.”’

Up in the Inspector, we see tabs for “Actors,” “Attributes” and “Devices.” “Attributes”
turns out to be GameSalad’s name for variables, meaning containers that store a changeable
value, just like “x” and “y” in algebra. “Devices” grants easy access to the data from the
computing hardware, such as the mouse location or the device’s accelerometer. This last is a
real boon, especially for mobile devices with touch screens and gyroscopes, making it easy to
design gameplay based around those features.

The nature of “Actors” is not immediately apparent (the description refers to “items”)
but it quickly becomes clear that the term means the objects that make up the game. Actors
must be created in the tab, then may be dragged and dropped directly into the black box of the
Scene on the right.

Note that GameSalad considers everything put into a game to be an actor, whether it
“acts” in a conventional sense or not, from static images to the player’s avatar. This is a subtle
point but an interesting one. For example, you can easily create an actor with an attached image

by dragging the image from the Library and dropping it into the Actors tab of the Inspector.

2 The software Unity offers a similar user-driven marketplace.
Griffis--Platform Studies: GameSalad--16

However, if you bypass the Inspector and drag and drop an image from the Library directly into
the scene, the software creates an actor with that image attached anyway. While this might seem
strange for a static image, the advantage is that, by making a distinction between an image and
the container for that image (the actor), and then letting the designer manipulate the container, it
becomes possible to control how the image functions in relation to the manipulated container,
e.g. if it is repeated, distorted, etc. The image is not a thing in itself but rather a pliable mask,

which makes something like tiling (repeating an image) easy to do.

VI. The Ul, Part Three: Hello World

A rite of passage for beginning programmers is to draw a rectangle and make it move
across the screen, so let’s see how easy it is to do that. First, we create an actor by clicking the

plus button in the Actors tab of the Inspector.

Fig. 10: A brand new Actor, ready for action.
We haven’t attached an image, so it’s just a blank white square, but that’s fine. We can add it

to the Scene by dragging and dropping it into the black box.

Griffis--Platform Studies: GameSalad--17

Fig. 11: We dragged and dropped Actor 1 directly into the Scene.
It’s time to put the Behaviors tab in the Library to use. In order to make the square move, we
have to assign behavior. To do that, we double-click on Actor 1.
But wait! We now have two white squares on-screen, both of which we can click on.
What is their relation and which should we double-click? Well, if we double-click on the one in
the Scene, it opens a view that refers at the top simply to “Actor 1.” However, if we

double-click on the one in the Inspector, we see reference to “Actor 1 (Prototype).”

Fig. 12: We see at the top that this is the prototype of Actor 1.

Griffis--Platform Studies: GameSalad--18

From this we can deduce that the actor appearing in the Inspector functions like a mold,
or the “class” in object-oriented programming. It doesn’t have any existence of its own in our
game, but we can use it to make a physical®® copy that does go in the game. More to the point,
we can make lots of copies. These copies, or “instances,” all take their nature from the
prototype. So, we can set the behavior for the prototype, then make many instances and they’ll

all behave the same. We double-click on Actor 1 in the Inspector.

Fig. 13: The “Actor” view for the “Actor 1’ prototype.
On the left we see that the actor has its own attributes, and on the right is a blank white box.

We know that we want to move with the press of a button, so we click “Create Rule” in the

30 well, relatively physical.
Griffis--Platform Studies: GameSalad--19

upper-right. This sets up a recurring check for a specific condition. We use the drop-down

menus to check for if the right arrow key is pressed.

Fig. 14: A condition check for if the right arrow key is pressed.
Now, in the Behaviors tab of the Library, we look through the options. The behaviors are
alphabetized, and clicking on any one brings up a description on the right, two things that I really
like. It’s easy to see what things do. The occasionally-humorous descriptions even provide

references to related behaviors--very classy! Scrolling down to the “M”’s, we find “Move.”

Fig. 15: The “Move” behavior, with handy description.

That sounds good, so we click on “Move” and drag it into the Rule we created.

Griffis--Platform Studies: GameSalad--20

Fig. 16: Our behavior for the square specifies movement when the key is pressed.
The Move behavior has several parameters that we can set. Direction is specified as an angle,
which the description warned us about and which might throw the geometry-uninclined for a
loop, but we can also click the little nub inside the circle to the right of the Direction field and
drag it to indicate the direction we want. Very nice. As it stands, the default values should be
fine for our purpose, so we simply click the green Preview arrow at the top of the software and

press the right arrow key.

Fig. 17: Previewing the game. We moved the square to the right!

Griffis--Platform Studies: GameSalad--21

It works! The square slides smoothly to the right. Easy as pie. We could just as simply add
controls to move in the other directions as well.

That, in a nutshell, is GameSalad. The interface is all drag-and-drop with (virtually) no
programming, the aesthetic is very friendly and welcoming, and it’s easy to use the many
Behaviors to set up the prototypes for all the elements in the game, then drag and drop instances
into the scene exactly where they should be.

We can even double-click on an instance to edit its individual parameters--if we wanted
a specific enemy to move faster than the speed specified by the prototype, for example--which
is in keeping with the relationship between class (default nature) and instance (specific nature) in
programming. However, one has to be careful. Editing an individual instance severs its
connection with the prototype, meaning that any changes made later to the prototype do not get
passed on to the edited instance. This is true whether or not the change made to the prototype
would actually conflict with the individualized change(s) to the instance.

The only way to reestablish the connection and apply new prototype behavior to an
edited instance is to “revert [the latter] to prototype,” thereby undoing any individualized
changes. Or, we could make every subsequent change twice, once in the prototype and once in
the instance--a tedious business. This is unlike true class-instance functionality, in which the
instance retains its connection to the prototype but simply overrides any parameter in conflict.

Consequently, when using GameSalad it’s wisest either to refrain from editing individual
instances until all prototype behavior has been established, or to duplicate the prototype and
create a separate actor prototype with the different behavior--for instance, enemyHorizontal vs.
enemy Vertical. This is somewhat like creating sub-classes, but not quite as robust. Still, within
those limitations the system works well and indeed makes it very simple to create a game of

some complexity with many moving parts.

Griffis--Platform Studies: GameSalad--22

VII. The Games We Make

So, what kind of game should we make? As mentioned before, GameSalad comes
with several templates. We could choose any of them and build a game using the template as a

starting point. Let’s consider the options once again:

Fig. 18: The included templates in GameSalad.
The last two aren’t games but rather demonstrate technical functionality in demand by the
aggressive mobile developers we are expected to be. The “Cannon Physics” template may
remind one of a certain popular game featuring irritated avians and is extremely impressive, but

also a tech demo, not a game. Let’s open “Alien Conquerors.”

Griffis--Platform Studies: GameSalad--23

’

Fig. 19: The first game template, “Alien Conquerors.’
OK, it’s a space-shooter of the kind we’ve seen before; pretty standard beginner stuff. How

about “Platformer Template™?

’

Fig. 20: The second game template, “Platformer Template.’
It’s a platformer, featuring the standard tropes of running and jumping and collecting things.

What about “Basic Shoot Em Up”?

Fig. 21: The third game template, “Basic Shoot Em Up.”

Griffis--Platform Studies: GameSalad--24

It’s...another shooter. Oh, but wait--this time we’re in atmosphere instead of space, and it’s
horizontal now! So, to recap our template options, we have: 1) fly a ship and shoot things, 2)
run, jump and collect things, and 3) fly a ship and shoot things.

I realize running, jumping and shooting are primal and they’ve formed the core of most
game design up to this point. I further realize that they’re easy interactions to create and
understand, and consequently are ideal for “My First Game (Genre).” But come on--two
shooters? Couldn’t the third template at least have been a puzzle game or something to
acknowledge gameplay diversity?

Here is further evidence of what I feel to be conservatism running through the
GameSalad software. It is an attitude that says “listen, we know what is a ‘game’ and we know
what people like and we know how to sell it to them and we know where to sell it to them, so
just do things our way and be successful, OK?”” And this is pragmatic, because indeed, shooters
and jumping games remain very popular, and in-app purchases do make a lot of money, and
mobile is the hot market. This is a product very much of its time, and that’s fine.

However, this attitude does not expand the medium, does not help video games to
develop and mature and grow in all sorts of exciting and unpredictable ways. The tools are there
in the software to create experimental work, to push the boundaries, to create games and
experiences that move away from jumping and shooting, but GameSalad doesn’t go out of its
way to encourage this.

Big props to GameSalad for the Arcade, because there the wilder stuff can shine
through, if it’s good enough and people notice. But what if one wants to learn how someone
else created something amazing in the software? Perhaps the community can fix the deficit in the
variety of available templates? Well, yes and no. Here’s what happens when one clicks the

“View More ...” button underneath the template list:

Griffis--Platform Studies: GameSalad--25

Fig. 22: Lots of additional templates available...for a price.
Yes, it’s a marketplace, the same one as we saw previously for getting additional images and
sounds. There are loads of templates available, and some of them may be very unorthodox
indeed, but they also cost money, and not a little money.

There is nothing fundamentally wrong with this--it incentivizes passionate creators to get
involved with the community and rewards them for putting time and effort into creating content
for others to use, assuming those others buy it. But it also creates a culture of commerce, not
assistance. If the Marketplace were not there, people might still create templates and other
content and make them available for others to use for free, but why would anyone make any
such content available for free when they can sell it on the Marketplace instead? Of course there
are still generous souls who record tutorials on YouTube and make resources available
elsewhere at no cost, but the majority of the additional content is going to end up on the

Marketplace, where there does not seem to be a way to tell how good the $50 template one is

Griffis--Platform Studies: GameSalad--26

considering actually is prior to buying it. Spend money to learn how to use GameSalad better
so that one can make money. Very practical.

As is readily apparent, I am not a big fan of the Marketplace model, but it’s not unique
to GameSalad--Unity does it too (with every bit as much appeal to me). I’'m all in favor of
people getting paid for their hard work, but I am not in favor of cheap cash-ins, which the lack
of a review system on GameSalad’s Marketplace would seem to enable. Furthermore, it really
bothers me that the templates included with the software are so limited, and that the way to get
more is to spend a lot of money somewhat blindly. I fear that GameSalad users without deep
pockets or the determination to figure out everything themselves may be excluded from a

broader selection of ideas and implementations.

VIII. Dubious Design Decisions

During my time porting the Activate! games into GameSalad, the consequences of two
questionable implementation decisions became clear, and I want to talk about those decisions.

One is the default physics system, while the other is the lamentable absence of snap-to-grid.

9,,,D3KVK/
Previously I commended GameSalad for its careful control over and presentation of

information, which makes it easy to understand the software and how and why the behaviors
work. The limitations of that ease of comprehension crystalize into clarity the first time one
makes a wall, sets the avatar to collide with (i.e. bounce off) the wall, and then runs the avatar

into the wall only to see the wall go flying off into the abyss.

Griffis--Platform Studies: GameSalad--27

Fig. 23: About to run the avatar (white) into the wall (black), with which it should
collide.

Fig. 24: Post-collision, the wall (black) flies off-screen; both wall and avatar (white)
rotate.

The first time this happened, I was completely baffled, and I expect others would be,
too. The reason it happened is that GameSalad has a robust physics system (as evidenced in
the “Cannon Physics” template), and every single actor comes with physics properties already
attached and in effect. Indeed, inside each actor’s attribute list is a whole category called
“Physics.” Running the white square into the black one transferred force to the black one,
sending it off on its personal journey of discovery.

In order to prevent the black square from moving, it’s necessary to open its Physics
attributes and uncheck the box for “Movable.” And even after that, one may get unanticipated
rotation on the white square from the collision unless one checks its box for “Fixed Rotation”
(also under Physics). When the Collide behavior description says “bounce,” it means “bounce”
in that icky physics way, not “stop moving.” That’s great if one wants a ball to actually bounce
off a surface, heading in the other direction, but it’s not great if one wants, say, a character
sliding on ice to collide with a wall and stop moving. To achieve that, one could either edit other,
even more technical physics attributes like “friction” and “bounciness,” or one could avoid

“Collide” entirely and set up different behavior instead.

Griffis--Platform Studies: GameSalad--28

Physics systems are not easy to make and it’s great that GameSalad integrates its own
so completely. I question the decision to attach it to, and enable it for, every actor by default.
Physics becomes something to opt out of rather than opt in to. Furthermore, if one wants to do
different physics, one really has to work at it. Maybe if the software did a better job of
explaining the system already in place it would be less of an issue, but the software does not,
and indeed the “Platformer Template” does not really expose the physics settings that make the
game work the way it does. One has to find them oneself. The rotation problem was especially
baffling at first. ’ve gotten in the habit with each new project of disabling some or all of the
physics settings for my actors, which seems like a lot of work to go through over and over
again.

Making physics-based interaction the norm is another ideological stance, implying that
all games should have physics®' and that those physics should work roughly the same way from
game to game. It’s obnoxious (and opaque) enough to disable undesired physics properties that
it may become tempting to design around them as a necessary evil. The physics system is so
easy to leverage that it stops being a razzle-dazzle feature and becomes just another tool, but

one that is very difficult to put back in the belt.

9,,,E 1R6(IBW* UG
This one hurts.

“Snap-to-grid” is a feature I first encountered in GameMaker. It divides up the game
screen into a grid of squares or rectangles of specified size and draws that grid on top of the

editing screen. It looks like this:

3! In addition to in-app purchases and touchscreen controls.
Griffis--Platform Studies: GameSalad--29

Fig. 25: The grid function in GameMaker.?

Once the grid is in place, one can choose to “snap” to it, meaning that as one drags
objects around on the screen, their position snaps to align with the corner of the nearest grid
cell. This makes it laughably easy to place objects with precision. It’s even possible to align
game elements with the grid during gameplay. For instance, one could make a chess game and
make a moved piece line up perfectly with the board square. The feature is profoundly useful for
map layout and quite useful for gameplay.

That’s GameMaker; how about GameSalad? Alas, poor snap-to-grid, you are
nowhere to be found. I have to take back what I said earlier about more resolution options for
GameSalad Arcade being the most-needed feature. That crown goes to snap-to-grid, and it
was no contest. It is painful to build any kind of elaborate scene layout with precision. Yes, one
can drag and drop objects just where one wants them in a scene (just like in GameMaker), but
the eye is not good at eyeballing true symmetry. So, if one wants to position everything with
mathematical exactitude, one must double-click on each and every actor instance, calculate
what its specific x and y coordinates should be, then manually set them. For every single thing in

the carefully laid-out scene.

32 hitp://docs.yoyogames.com/source/dadiospice/images/form_room_tiles.png
Griffis--Platform Studies: GameSalad--30

http://www.google.com/url?q=http%3A%2F%2Fdocs.yoyogames.com%2Fsource%2Fdadiospice%2Fimages%2Fform_room_tiles.png&sa=D&sntz=1&usg=AFQjCNHffsiTCg_ST2whfMzT-CnfWXiMng

What if we need a line of perfectly-aligned trees across the top of the screen? We could
create many instances and put them next to each other, then edit their position. Assuming we
don’t need them to behave individually though, we could also use image tiling, by stretching a
single tree actor instance to be as wide as the screen and then setting the image to tile
horizontally. That works really well! Except that, without snap-to-grid, we’ve got to guess what
width is the right width so we don’t end up with a fragmented tree image on the end because
there wasn’t enough space for another full copy. Or, we could mentally calculate how many
pixels wide the actor should be, based on how many trees we want, and set it manually. Oh,
and when one stretches an actor, it becomes less apparent where its x- and y-coordinates are
located on its body. So, positioning the actor becomes even more frustrating.

Unless one is extremely patient, determined or insane, the absence of snap-to-grid
means designing scenes that are less complex and less precisely laid out. Not all scenes need to
be precise, obviously, but the fact that it is so hard to achieve precision promotes sloppier
layouts. Yet the feature’s absence also hurts gameplay in another way. To illustrate it, here is
what happened when I tried to replicate one Activate! game’s unique movement system.
Warning: highly-technical discussion ahead.

“Lights Off” is a game about moving through a neighborhood while telling neighbors to
save electricity and avoiding power-crazed “zombie” neighbors. You can bet it used
GameMaker’s snap-to-grid. Every sprite in the game (whether tree, character or house) is
32x32 pixels, and the room (i.e. scene) that makes up each neighborhood is divided into a grid
of squares, each sized 32x32. Paths are tight, no space is wasted,and everything is exactly
where it needs to be, which is possible because the avatar’s movement is aligned to the grid.
Pressing the movement key moves the avatar one square; holding it keeps the avatar moving;
either way, the avatar’s position always aligns (i.e. snaps) to the nearest grid square upon key
release.

Recreating this in GameSalad...did not go well. Recall that no space was wasted in the
original level layouts. That meant that every path was 32 pixels wide, exactly as wide as the

avatar. In theory, this could work perfectly well in GameSalad. The problem is that the collision

Griffis--Platform Studies: GameSalad--31

detection is very exact. In order for the 32x32px avatar to move into a 32px-wide path, the two
have to be perfectly aligned. If the avatar is one pixel off, it will collide with the edge of the path
and refuse to move. The align-to-grid behavior in GameMaker took care of this, but there is no
such assist here.

What are the options for movement? There is the Move behavior, which takes a
direction and a speed. That seems like disaster because it would be almost impossible to line up
the avatar with a given path. There is the Move To behavior, which specifies a coordinate point
and a speed. That has more potential--we could set the avatar to move 32 units in the direction
of movement. The problem is that it is still movement with a speed, i.e. crossing a distance, and
it could be interrupted by an obstacle or an early key release. As soon as the avatar moves
anything less than 32 units and stops, it’s out of alignment with the imaginary grid, and we have
the same problem. And if we set “run to completion,” which requires the movement to complete
the 32 units, we lose control of the avatar upon collision while it struggles to complete what’s
left of the motion but can’t because of the obstacle.

Furthermore, there’s the issue of enabling continuous movement by holding the key.
“Move To” is not a repeating behavior, which means it occurs once every time it’s cued.
Pressing and releasing a key is considered a single event by GameSalad, so it only cues Move
To once per key press, regardless of how long one holds the key down. I tried various
stratagems to trick the system but none of them worked. So even if the alignment weren’t a
problem, it would still be necessary to continuously tap the movement key, which is tiresome.

There is “Change Attribute”--we could change the position to be 32 units in the
direction of movement, which is instantaneous. But that circumvents the collision detection; the
avatar can move right through obstacles! So far nothing is satisfactory.

Permit me to describe how one would achieve the goal in code. In pseudo-code (i.e.

normal language), it would look like this:

If the position in the axis of movement is not a multiple of 32, add 1 until it is.

Griffis--Platform Studies: GameSalad--32

In actual code, it might look like this (for positive movement in the y-axis):

temp.y = pos.y, // Copy the current y-position into temp.y.
diff.y = 0; // Set a separate, new variable equal to 0.
if (temp.y <32){ // If temp.y is less than 32...
temp.y = temp.y + I; /... Add 1.
diff.y =diff.y + 1, /... Also add 1 to diff.y (started at 0).
Jelseif (temp.y>32){ // But if temp.y is greater than 32...
temp.y = temp.y - 32; //...Subtract 32.
Jelse { // But if temp.y is equal to 32...
pos.y = pos.y + diff.y; //...Add the value of diff.y to pos.y.
/

This simply calculates the difference (represented as “diff.y”) between the current y-position and
the next multiple of 32, and increases the y-position by that much.*

While there’s not support for writing code directly in GameSalad, one can create and
manipulate variables, so I tried to implement the above code as a series of rules and just
couldn’t get it to work. It’s possible I made some mistake and this sort of approach could
work, but there’s no doubt that it fights against a system not designed for something like this.

In the end, I gave up on implementing the grid movement. Instead, I put the Move
behavior back in place, and then I redesigned the levels to feature wider paths. That meant
substantially revising the layouts, with all the tedious manual adjustment of position and size
previously described. Ultimately, a similar game, not the same game.

This is an unusual case. But grid alignment is a staple of certain genres of games, and
snap-to-grid is not a niche or minor feature. Its absence creates real design challenges, however

closely they might mirror those from my case study. It’s worth noting that I did some research

3 The code does assume the position always remains an integer. It would need to be adjusted for
floats (i.e. decimals).

Griffis--Platform Studies: GameSalad--33

into grid movement in GameSalad and discovered an example using tables, which are another
feature. I haven’t talked about tables so far in this paper, and the reason is that creating a table

in GameSalad yields this:

Fig. 26: A blank table in GameSalad. Who's ready for spreadsheet fun?

Yes, it’s a spreadsheet. “Table,” indeed. Tables are required to do things like manage in-app
purchases but they can also be used for advanced calculations like those that might be
necessary for grid movement. I didn’t use them though because come on, look at that
spreadsheet. How unintuitive can you get? This is contrary to the spirit of the rest of the
software. To use a table, one has to know what one is doing, and to use it to do something like
grid movement, one has to be an advanced user and/or have some idea of how to code.

So, if one really wanted grid movement, and really wanted to use GameSalad, maybe it
would be worth buying a template, if there is one for that. But if the software had snap-to-grid,

this wouldn’t be necessary. The lack of snap-to-grid is a critical weakness.

IX. Conclusion
One of the games consistently featured at the top of GameSalad Arcade is called

“CheeseMan Free,* an utterly shameless--and openly admitted--clone of Super Meat Boy,

and you know what? It’s pretty good, quite impressive technically and aesthetically, and free

34 http://arcade.gamesalad.com/game/60150

Griffis--Platform Studies: GameSalad--34

http://www.google.com/url?q=http%3A%2F%2Farcade.gamesalad.com%2Fgame%2F60150&sa=D&sntz=1&usg=AFQjCNEchFN2p_FgQRD7m_RzCmWJUO2VJw

and easy to play in any web browser. And it is not a space shooter or generic platformer (if you
have to steal, steal from the best). Clearly it is possible to craft impressive productions with the
software.

GameSalad manages to be approachable while offering an impressive level of
sophistication. The simple elegance of the Ul and the friendly intuitiveness of almost everything
make GameSalad a fantastic learning tool.

The publishing features are powerful and it’s easy to put a game on the web. There’s no
question this software is primed to help people not only create but also distribute their games
and even monetize them, especially in the lucrative mobile market. The community focus and
Marketplace feature encourage people to create and share and earn income even from creative
work other than finished games. GameSalad is very much a timely product. It’s robust,
capable, and clear-eyed about its priorities.

That same clarity makes me anxious about what kind of game creation it enables. The
relentless focus on mobile publishing and in-app purchases, on tried-and-true game mechanics
and standardized platforms, pushes against other ways of thinking and doing. By locking most
additional pre-made content behind the Marketplace paywall, it discourages people from
checking out and getting inspired by other people’s work, except through the Arcade, which
imposes its own restriction through the single allowed (and perplexingly small) game screen size.
Finally, the imposition of physics and the unforgivable absence of snap-to-grid mean too much
fighting against the system for no good reason.

In the end, I commend GameSalad for achieving its goal of being an easy-to-use tool
that makes game development accessible to many more people, and I hope that as it continues
to improve it will address its limitations. If it does not, I can only hope that those who learn with

it will then move beyond it to other software with a broader mindset and more powerful tools.

Griffis--Platform Studies: GameSalad--35

